深度度量学习算法旨在学习有效的嵌入空间,以保持输入数据之间的相似性关系。尽管这些算法在广泛的任务中取得了显着的性能增长,但它们也未能考虑并增加全面的相似性约束。因此,在嵌入空间中学习了亚最佳度量。而且,到目前为止;关于它们在嘈杂标签的存在方面的研究很少。在这里,我们通过设计一个新颖而有效的深层差异损失(DCDL)功能来解决学习歧视性深层嵌入空间的关注和每个班级。在存在和没有噪声的情况下,我们在三个标准图像分类数据集和两个细粒图像识别数据集中的经验结果清楚地表明,在学习歧视性嵌入空间的同时,需要将这种类似的相似性关系以及传统算法结合在一起。
translated by 谷歌翻译
当标记的数据丰富时,从单个图像中进行3D姿势估计的监督方法非常有效。但是,由于对地面3D标签的获取是劳动密集型且耗时的,最近的关注已转向半决赛和弱监督的学习。产生有效的监督形式,几乎没有注释,仍然在拥挤的场景中构成重大挑战。在本文中,我们建议通过加权区分三角剖分施加多视文几何约束,并在没有标签时将其用作一种自我设计的形式。因此,我们以一种方式训练2D姿势估计器,以使其预测对应于对三角姿势的3D姿势的重新投影,并在其上训练辅助网络以产生最终的3D姿势。我们通过一种加权机制来补充三角剖分,从而减轻了由自我咬合或其他受试者的遮挡引起的嘈杂预测的影响。我们证明了半监督方法对人类36M和MPI-INF-3DHP数据集的有效性,以及在具有闭塞的新的多视频多人数据集上。
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Spiking Neural Networks (SNNs) are bio-plausible models that hold great potential for realizing energy-efficient implementations of sequential tasks on resource-constrained edge devices. However, commercial edge platforms based on standard GPUs are not optimized to deploy SNNs, resulting in high energy and latency. While analog In-Memory Computing (IMC) platforms can serve as energy-efficient inference engines, they are accursed by the immense energy, latency, and area requirements of high-precision ADCs (HP-ADC), overshadowing the benefits of in-memory computations. We propose a hardware/software co-design methodology to deploy SNNs into an ADC-Less IMC architecture using sense-amplifiers as 1-bit ADCs replacing conventional HP-ADCs and alleviating the above issues. Our proposed framework incurs minimal accuracy degradation by performing hardware-aware training and is able to scale beyond simple image classification tasks to more complex sequential regression tasks. Experiments on complex tasks of optical flow estimation and gesture recognition show that progressively increasing the hardware awareness during SNN training allows the model to adapt and learn the errors due to the non-idealities associated with ADC-Less IMC. Also, the proposed ADC-Less IMC offers significant energy and latency improvements, $2-7\times$ and $8.9-24.6\times$, respectively, depending on the SNN model and the workload, compared to HP-ADC IMC.
translated by 谷歌翻译
基于事件的摄像机最近由于其不同步捕获时间丰富的信息的能力而显示出高速运动估计的巨大潜力。具有神经启发的事件驱动的处理的尖峰神经网络(SNN)可以有效地处理异步数据,而神经元模型(例如泄漏的综合和火灾(LIF))可以跟踪输入中包含的典型时序信息。 SNN通过在神经元内存中保持动态状态,保留重要信息,同时忘记冗余数据随着时间的推移而实现这一目标。因此,我们认为,与类似大小的模拟神经网络(ANN)相比,SNN将允许在顺序回归任务上更好地性能。但是,由于以后的层消失了,很难训练深SNN。为此,我们提出了一个具有可学习的神经元动力学的自适应完全刺激框架,以减轻尖峰消失的问题。我们在时间(BPTT)中利用基于替代梯度的反向传播来从头开始训练我们的深SNN。我们验证了在多车立体化事件相机(MVSEC)数据集和DSEC-FLOW数据集中的光流估计任务的方法。我们在这些数据集上的实验显示,与最新的ANN相比,平均终点误差(AEE)平均降低了13%。我们还探索了几个缩小的模型,并观察到我们的SNN模型始终超过大小的ANN,提供10%-16%的AEE。这些结果证明了SNN对较小模型的重要性及其在边缘的适用性。在效率方面,与最先进的ANN实施相比,我们的SNN可节省大量的网络参数(48倍)和计算能(51倍),同时获得了〜10%的EPE。
translated by 谷歌翻译
上下文:大数据的有效处理是SQL和NOSQL数据库的一项具有挑战性的任务,在这种数据库中,有效的软件体系结构起着至关重要的作用。 SQL数据库设计用于构建数据和支持垂直可扩展性。相反,水平可伸缩性由NOSQL数据库支持,并且可以有效地处理较大的非结构化数据。可以根据组织的需求选择正确的范式;但是,做出正确的选择通常可能具有挑战性。 SQL和NOSQL数据库遵循不同的体系结构。同样,混合模型之后是NOSQL数据库的每个类别。因此,对于多个云服务提供商(CSP)的云消费者来说,数据移动变得困难。此外,每个云平台IAAS,PAAS,SaaS和DBAAS还监视各种范式。目的:该系统文献综述(SLR)旨在研究与SQL和NOSQL数据库软件体系结构相关的相关文章,并解决各种云平台之间的数据可移植性和互操作性。最新的状态通过观察缩放,性能,可用性,一致性和分片特性,介绍了SQL和NOSQL数据库的许多性能比较研究。根据研究研究,NOSQL数据库设计的结构可以是大数据分析的正确选择,而SQL数据库适合OLTP数据库。研究人员提出了许多与云中数据流动相关的方法。开发了基于平台的API,这使用户的数据移动变得困难。因此,在跨多个CSP的数据移动期间发现了数据可移植性和互操作性问题。为了最大程度地减少开发人员的努力和互操作性,要求统一的API使数据移动在各种云平台之间相对易于访问。
translated by 谷歌翻译
确实,卷积神经网络(CNN)更合适。然而,固定内核大小使传统的CNN太具体,既不灵活也不有利于特征学习,从而影响分类准确性。不同内核大小网络的卷积可以通过捕获更多辨别和相关信息来克服这个问题。鉴于此,所提出的解决方案旨在将3D和2D成立网的核心思想与促进混合方案中的HSIC CNN性能提升。生成的\ Textit {注意融合混合网络}(AFNET)基于三个关注融合的并行混合子网,每个块中的不同内核使用高级功能,以增强最终的地面图。简而言之,AFNET能够选择性地过滤滤除对分类至关重要的辨别特征。与最先进的模型相比,HSI数据集的几次测试为AFNET提供了竞争力的结果。拟议的管道实现,实际上,印度松树的总体准确性为97 \%,博茨瓦纳100 \%,帕尔茨大学,帕维亚中心和萨利纳斯数据集的99 \%。
translated by 谷歌翻译
该调查侧重于地球系统科学中的当前问题,其中可以应用机器学习算法。它概述了以前的工作,在地球科学部,印度政府的持续工作,以及ML算法的未来应用到一些重要的地球科学问题。我们提供了与本次调查的比较的比较,这是与机器学习相关的多维地区的思想地图,以及地球系统科学(ESS)中机器学习的Gartner的炒作周期。我们主要关注地球科学的关键组成部分,包括大气,海洋,地震学和生物圈,以及覆盖AI / ML应用程序统计侦查和预测问题。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
脑转移性疾病的治疗决策依赖于主要器官位点的知识,目前用活组织检查和组织学进行。在这里,我们开发了一种具有全脑MRI数据的准确非侵入性数字组织学的新型深度学习方法。我们的IRB批准的单网回顾性研究由患者(n = 1,399)组成,提及MRI治疗规划和伽马刀放射牢房超过19年。对比增强的T1加权和T2加权流体减毒的反转恢复脑MRI考试(n = 1,582)被预处理,并输入肿瘤细分,模态转移和主要部位分类的建议深度学习工作流程为五个课程之一(肺,乳腺,黑色素瘤,肾等)。十倍的交叉验证产生的总体AUC为0.947(95%CI:0.938,0.955),肺类AUC,0.899(95%CI:0.884,0.915),乳房类AUC为0.990(95%CI:0.983,0.997) ,黑色素瘤ACAC为0.882(95%CI:0.858,0.906),肾类AUC为0.870(95%CI:0.823,0.918),以及0.885的其他AUC(95%CI:0.843,0.949)。这些数据确定全脑成像特征是判别的,以便准确诊断恶性肿瘤的主要器官位点。我们的端到端深度射出方法具有巨大的分类来自全脑MRI图像的转移性肿瘤类型。进一步的细化可以提供一种无价的临床工具,以加快对精密治疗和改进的结果的原发性癌症现场鉴定。
translated by 谷歌翻译